Hybrid Filter-Wrapper with a Specialized Random Multi-Parent Crossover Operator for Gene Selection and Classification Problems
نویسندگان
چکیده
The microarray data classification problem is a recent complex pattern recognition problem. The most important goal in supervised classification of microarray data, is to select a small number of relevant genes from the initial data in order to obtain high predictive classification accuracy. With the framework of a hybrid filter-wrapper, we study in this paper the role of the multi-parent recombination operator. For this purpose, we introduce a Random Multi Parent crossover (RMPX) and we analyze their effects in a genetic algorithm (GA) which is combined with Fisher’s Linear Discriminant Analysis (LDA). This hybrid algorithm has the major characteristic that the GA uses not only a LDA classifier in its fitness function, but also LDA’s discriminant coefficients to integrate a multi-parent specialized crossover and mutation operation to improve the performance of gene selection. In the experimental results it is observed that RPMX operator work very well by achieving lower classification error rates.
منابع مشابه
Fuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection
Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...
متن کاملFeature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کاملSFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy
In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....
متن کاملFast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets
Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...
متن کاملDeveloping a Filter-Wrapper Feature Selection Method and its Application in Dimension Reduction of Gen Expression
Nowadays, increasing the volume of data and the number of attributes in the dataset has reduced the accuracy of the learning algorithm and the computational complexity. A dimensionality reduction method is a feature selection method, which is done through filtering and wrapping. The wrapper methods are more accurate than filter ones but perform faster and have a less computational burden. With ...
متن کامل